Stiffness control of a legged robot equipped with a serial manipulator in stance phase
Authors
Abstract:
The ability to perform different tasks by a serial manipulator mounted on legged robots, increases the capabilities of the robot. The position/force control problem of such a robot in the stance phase with point contacts on the ground is investigated here. A target plane with known stiffness is specified in the workspace. Active joints of the legs and serial manipulator are used to exert the desired normal force on the plane while tracking a desired trajectory on the plane. First, the equations of motion of the robot and contact forces of the feet on the ground are derived. A controller is then proposed which tracks the desired trajectory while keeping the feet contacts on the ground and prevent slipping. An optimization problem is solved in each control loop to minimize the actuation effort. This minimization is subject to position tracking for the end-effector (using inverse dynamics controller), force requirements of the feet contacts with the ground, and actuators capabilities. Simulations are conducted for the simplified model of a quadruped robot with a 2-DOF serial manipulator. To test the controller, a 20 N normal force is applied onto the target plane while moving the tip of the end-effector. It is shown that the robot can perform the task effectively without losing the ground contact and slipping.
similar resources
Dynamics and Control for a Novel One-Legged Hopping Robot in Stance Phase
Legged locomotion systems are a class of biological robots by supporting on the ground with discrete points, and can traverse nature terrain in large range. This kind of robots is a class of important research objects in robotics community in a long time. In the early time, most of the legged robot systems are static balance locomotion systems, which show a slow moving speed and high requiremen...
full textIntegrator Backstepping Control of a 5 DoF Robot Manipulator with Cascaded Dynamics
In this paper, dynamic equations of motion of a 5 DoF robot manipulator including mechanical arms with revolute joints and their electrical actuators are considered. The application of integrator backstepping technique for trajectory tracking in presence of parameters of uncertainty and disturbance is studied. The advantage of this control technique is that it imposes the desired properties of ...
full textprevalence of atopic dermatitis in children with type 1 diabetes mellitus in southeastern of iran (kerman province): a case-control study
چکیده ندارد.
15 صفحه اولadaptive fuzzy control of a mobile manipulator robot
a mobile manipulator robot is known as a complex system due to some properties such as coupling between the manipulator and mobile chassis, holonomic and nonholonomic constraints, multivariable and nonlinear dynamics. the control of robot faces the external disturbance, parametric uncertainty and unmodeled dynamics. therefore, the use of an adaptive fuzzy system is suggested for its capability ...
full textLegged Robot Landing Control using Body Stiffness & Damping
This Paper is about landing control of legged robot. Body stiffness and damping is used as landing strategy of a legged robot. First, we only used stiffness control method to control legged robot landing. Second control method,sliding mode controller and feedback linearization controller is applied to enhance position control performance. Through these control algorithm, body center of gravity ...
full textMy Resources
Journal title
volume 48 issue 1
pages 27- 38
publication date 2017-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023